
1

Verification and Validation of Autonomy Software at NASA

Charles Pecheur*

March 13, 2000

Abstract

Autonomous software holds the promise of new operation possibilities, easier

design and development and lower operating costs. However, as those system close

control loops and arbitrate resources on-board with specialized reasoning, the range

of possible situations becomes very large and uncontrollable from the outside,

making conventional scenario-based testing very inefficient. Analytic verification

and validation (V&V) techniques, and model checking in particular, can provide

significant help for designing autonomous systems in a more efficient and reliable

manner, by providing a better coverage and allowing early error detection. This

article discusses the general issue of V&V of autonomy software, with an emphasis

towards model-based autonomy, model-checking techniques and concrete

experiments at NASA.

1 Introduction

NASA's mission of deep space exploration, coupled with Administrator Goldin's directive to do it

"faster, better, and cheaper", has created an exciting challenge for the computer science research

community: that of designing, building, and operating smart, adaptable, and self-reliant

autonomous spacecraft, rovers, airplanes, and perhaps even submarines, capable of coping with

harsh and unpredictable environments. As those robotic explorers continue to explore Mars and

beyond, the great distances from Earth will require that they be able to independently perform not

only navigation tasks and self-diagnosis, but also an increasing amount of autonomous or semi-

autonomous on-board science. For example, the Autonomous Controller for the In-Situ Propellant

Production facility, designed to produce spacecraft fuel on Mars, must operate with infrequent and

severely limited human intervention to control complex, real-time, and mission-critical processes

over periods of months or years in poorly understood environments (Gross et al., 1999).

2

While autonomy offers promises of improved capabilities at a reduced operational cost, there are

concerns about being able to design, implement and verify such autonomous systems in a reliable

and cost-effective manner. This article discusses the general issue of V&V of autonomy software,

with an emphasis towards model-based autonomy, model-checking techniques and concrete

experiments at NASA. Section 2 introduces autonomy software, section 3 discusses how they can

be verified, section 4 focuses on verification of model-based autonomy, section 5 presents further

applications in verification of autonomy at NASA, and section 6 draws conclusions.

2 Autonomous Systems

2.1 The Need for Autonomy

Though information technology is taking a more and more important part in our everyday life, we

still depend heavily on human intelligence and adaptability when it comes to responding to

unforeseen circumstances. Even highly automated systems such as nuclear plants, power

distribution networks or assembly lines rely on human operators in critical or anomalous situations.

This is particularly true at NASA, where space missions are still almost entirely controlled by

human operators on earth. The successful safe return of the crew of Apollo 13 is a famous example

where the intelligence of the crew and the huge ground support team were essential in saving the

mission with the limited available resources. More automation has been introduced since then, but

the tasks performed by software in space missions are rudimentary, and every shuttle, spacecraft or

space station module in operation has a full team of highly trained engineers constantly monitoring

its health from Earth.

The limited use of software is justified by the very high reliability requirements for space

technology: it is very difficult to design, develop and validate software that provides the needed

functionalities. However, ongoing progress in software technologies, coupled with the exponential

growth of computer performance, now make it possible to go towards more autonomous systems,

where a larger part of the control is delegated to autonomy software.

There are two main reasons driving the development of autonomy software: one is budgetary, the

other is technical. On the budgetary side, autonomy will reduce the need for human attendance,

which is a major cost factor at NASA and elsewhere – this is the same incentive that has driven the

3

ubiquitous appearance of automation in less critical tasks, from dial phones to on-line shopping.

Even more importantly, though, autonomy reduces the reliance on the communication link between

the system and its operators, opening a full new range of opportunities:

- In space, information takes more and more energy and time to reach its destination as distance

increases – up to 20 minutes from Earth to Mars. Local autonomous control software will

enable much faster reactions. This can increase productivity, enable new missions or even

save the life of a spacecraft.

- Even with negligible communication delays, autonomy can provide computer-speed reaction

times in places where human response time would be too slow with respect to the

environment, as for example in collision avoidance systems.

- Autonomy also continues to work when no communication is possible at all, because of

interference or physical obstacles. In planetary missions, this happens when a spacecraft

passes behind a planet; in earth-bound missions, this enables deep underground or submarine

explorations.

2.2 Model-Based Autonomy

In its simplest form, autonomy software consists in control sequences that allow the controlled

system to achieve its particular goal while tolerating a certain amount of uncertainty in its

environment. To build this code, the software engineer must use his understanding of the system to

anticipate execution scenarios for all the possible combinations of events that may arise, both in the

system and in its environment. The development and validation of such scenario-based code

becomes very difficult as the system becomes more complex, due to the combinatory explosion of

the number of situations to be handled.

Model-based reasoning (MBR) uses artificial intelligence techniques to automate the inference of

those scenarios, using an abstract, declarative model of the system, as shown on Figure 1. Applying

efficient reasoning rules to this model and to sensor data, an MBR system can infer information

about the current state of the physical system, and build sequences of actions to drive it to a desired

configuration, even in situations that were not anticipated at design time.

4

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of

Figure 1. Model-based autonomous controller

Instead of using a static, human designed model for controlling a system, some innovative

approaches are based on a dynamic model that is progressively improved through a learning

process. The initial learning phase is usually done before the system is put in service, but some

further adaptation can be done while in operation, for example as the system learns about new

unanticipated working conditions. In particular, adaptive techniques include neural networks or

genetic algorithms.

2.3 Example: Remote Agent

The Remote Agent (RA) is an autonomous spacecraft controller developed by NASA Ames

Research Center conjointly with Jet Propulsion Laboratory (Muscettola et al., 1998). Remote Agent

comprises three parts, two of which are model-based (Figure 2):

- The Planner and Scheduler (PS) (Muscettola, 1994) generates flexible plans, specifying the basic

activities that must take place. Given a mission goal, such as taking a picture of an asteroid,

the planner/scheduler uses a model of the spacecraft's resources to produce sequences of tasks

for achieving this goal.

- The Smart Executive (EXEC) (Pell et al., 1998) receives the plan from the planner/scheduler and

commands spacecraft systems to take the necessary actions.

- The Mode Identification and Recovery (MIR), based on the Livingstone model-based health

management system (Williams and Nayak, 1996), uses another model describing both the nominal

and failure modes of the different components of the spacecraft. By comparing the observed

real state with the state predicted by the model, Livingstone can detect and diagnose failures

and suggest recovery actions to the executive.

5

Figure 2. Remote Agent

Remote Agent was demonstrated in flight on the Deep Space One mission (DS-1) in May 1999,

marking the first control of an operational spacecraft by AI software (Nayak et al., 1999).

3 Verification of Autonomy Software

3.1 Scenario-Based Testing

Typical software development models are staged into several phases: requirements capture, design,

implementation, verification, deployment, maintenance. We are mainly concerned about

verification1, which role is to assert that the implementation performs as expected. Usually, the

verification phase is done using scenario-based testing. The software component to be verified is

embedded into a test harness that connects to the inputs and outputs of that component, and drives

it through a suite of test runs. Each test run is an alternated sequence of provided inputs and

expected outputs, corresponding to one scenario of execution of the tested component. An error is

signaled when the received output does not meet the expected one.

Even for simple systems, the design and maintenance of test suites is a difficult and expensive

process. It requires a good understanding of the system to be tested, to ensure that a maximum

number of different situations are covered using a minimum number of test cases. Running the tests

is also a time-consuming task, because the whole program code has to be executed and everything

6

must be re-initialized before each test run. In the development of complex systems, it is quite

common that testing the software actually takes more resources than developing it.

In conventional controllers, the code to be tested consists mostly of sequential scenarios, which are

activated explicitly by human operators through an open control loop. It is thus quite convenient to

attach a test harness to that control channel and build test runs that exercise each of these scenarios.

In contrast, verification of autonomous systems is much more challenging, for several reasons:

- First, autonomous systems close the control loops and arbitrate resources on-board, making it

more difficult to plug in test harnesses and write detailed test runs that drive the system

through a desired behavior.

- Second, the range of situations to be tested is incomparably larger. In the open loop case, it is

up to the intelligence of the experts in control to choose the appropriate response to a situation

as it occurs. In the autonomous case, the program implicitly incorporates response scenarios

to any combination of events that might occur. The reaction can also depend on the current

configuration of the system, or even on its past history in the case of adaptive systems. All

these factors multiply exponentially with the size of the system, and a test suite can only

exercise a very limited portion of those cases.

- Third, as different concurrent parts of the autonomous controller interact together internally,

the controller can now react in different ways to the same stimuli, for example because of

differences in scheduling. The consequence is that a successful test run does not even

guarantee that the system will behave correctly for the tested scenario, because the same input

sequence can lead to different execution sequences. Another test run could fail due to

uncontrollable changes of circumstances. This is a well-known issue in designing concurrent

systems.

The recent Remote Agent experiment (RAX) did provide a striking example (Nayak et al., 1999).

After a year of extensive testing, Remote Agent was put in control of NASA's Deep Space One

mission on May 17, 1999. A few hours later, RAX had to be stopped after a deadlock had been

detected. After analysis, it turns out that the deadlock was caused by a highly unlikely race

condition between two concurrent threads inside Remote Agent's executive. The scheduling

7

conditions that caused the problem to manifest never happened during testing but indeed showed up

in flight. RAX was re-activated two days later and successfully completed all its objectives.

Note that redundancy, which is the usual solution to increase reliability, is not appropriate for

software. As opposed to hardware components, which fail statistically because of wear or external

damage, programs fail almost exclusively due to latent design errors. Failure of an active system is

thus highly correlated with failure of a duplicate back-up system (unless the systems use different

software designs, as in the Shuttle's on-board computers).

3.2 Model Checking

Analytic verification is the branch of software engineering concerned with establishing, through

some mathematically based analysis, that a computer program fulfills a formally expressed

requirement. Two main approaches to analytic verification have been developed:

- Theorem provers build a computer-supported proof of the requirement by logical induction

over the structure of the program;

- Model checkers search all realizable executions of the program for a violation of the

requirement.

In principle, theorem provers can use the full power of mathematical logic to analyze and prove

properties of any design in its full generality. For example, the PVS system (Owre et al., 1996) has

been applied to many NASA applications (e.g. (Di Vito, 1996), (Butler et al., 1995)). However, these

provers require a lot of efforts and skills from their users to drive the proof, making them suitable

for analysis of small-scale designs by verification experts only. In contrast, model checking is

completely automatic, and thus more convenient for verification in on-line software development

environments, as opposed to off-line research studies using theorem provers.

The program here is some representation of the dynamic, generally concurrent behavior of the

application. For tractability reasons, it is usually not the complete code from the implementation

but rather some abstract verification model2 of the application, capturing only the essential features

that are relevant to the requirements to be checked, expressed in a language that is accepted by the

verification tools. Those languages vary among different analytic verification technologies, but the

underlying mathematical abstraction is always some kind of transition system: the model defines

8

the structure of a state of the system, the set of possible initial states, and a transition relation

defining the allowed moves of the system.

The requirements to be checked can be invariants (e.g., a resource cannot be accessed by two

processes at the same time), temporal properties (e.g., after a process locks a resource it will

always eventually release the lock) and even metric properties (e.g., the lock will be released

within 30 milliseconds). Other approaches work by comparison between models (e.g., a distributed

cache memory algorithm is equivalent to a local memory model).

In its simplest form, a model checker starts from the initial states and repeatedly applies the

transition relation to search all reachable states for a property violation, while remembering

explored states to avoid looping. A lot of improvements have been introduced to make this search

as flexible and efficient as possible (e.g. partial order reduction (Godefroid, 1996) or symmetry

reduction (Ip and Dill, 1996)). When a property violation is found, the model checker reports the

execution trace that leads to the violation, which is essential for diagnosing the source of the

problem.

Symbolic model checkers offer a useful alternative to conventional explicit-state model checking as

described above. Instead of generating and exploring every single state, symbolic model checking

manipulates whole sets of states at each step, implicitly represented as the logical conditions that

those states satisfy. These conditions are encoded into data structures called Binary Decision

Diagrams (BDDs) (Bryant, 1986), that provide a compact representation and support very efficient

manipulations. For example, BDDs for a set of states and for the transition relation can be

combined to obtain a BDD for the next set of reachable states. Symbolic model checking can

address much larger systems than explicit state model checkers, but does not work well for all

systems: the complexity of the BDDs can outweigh the benefits of symbolic computations, and

BDDs are still exponential in the size of the system in the worst case. One of the major symbolic

model checkers is SMV developed by K. McMillan and E. Clarke at Carnegie-Mellon University

(CMU) (Burch et al., 1992).

Autonomy programs and models have an abstract view of the system they control. The nature of

this abstraction, and the corresponding programming or modeling paradigms, can vary according to

the needs of each application. The kind of abstraction used has a critical influence on the

complexity and tractability of the verification task:

9

- Discrete models describe the system in terms of transitions between states, where a state

describes a stable configuration of the system for some duration of time. Discrete models are

usually based on some form of automata.

- Real-time models can specify time durations between events, whereas un-timed discrete

models only address the order in which transitions occur.

- Continuous models represent the continuous change in the system with respect to time, using

some form of differential equations.

- Hybrid models mix continuous changes and discrete transitions.

Currently available heavy-duty model checkers, such as Spin (Bell Labs) (Holzmann, 1997) or Murphi

(Stanford) (Dill et al., 1992), are based on discrete un-timed models. Model checking of richer

formalisms is still an active field of research: though prototype tools exist for real-time models

(Uppaal (Larsen et al., 1997), Kronos (Yovine, 1997)) or even hybrid models (Hytech (Henzinger et al.,

1997)), these tools still do not scale up well to real-size models.

Finally, with adaptive systems that are designed to modify their behavior dynamically, any kind of

a priori analytic verification becomes problematic. A solution could reside in run-time incremental

verification, where the parts of the system affected by an adaptive re-configuration are verified

before the re-configuration is committed. Since the verification has to be performed on-board and

during the operation of the autonomous system, this may put very tight time and space

requirements on the verification process.

3.3 Benefits of Model Checking

Model checkers are particularly well suited for exploring the relevant execution paths of non-

deterministic systems with multiple processes running in parallel. Instead of executing the real

code, a model checker executes an abstract model in a highly efficient way. Furthermore, the model

checker can backtrack to explore alternative paths from a common intermediate state, avoiding the

costly reset between test runs. It will automatically detect already explored states, thus exploring all

executions exactly once. Finally, it controls the scheduling of concurrent components of the model,

and will therefore explore all possible execution sequences even for the same input sequence. For

all these reasons, model checking can provide a much better coverage than scenario-based testing,

and do so in a much shorter time (millions of states in hours of time).

10

Model checking can also be applied at an earlier stage in the design, long before a testable

implementation is available. The cost for diagnosing and repairing faults grows exponentially as the

system is developed: the division bug in early Pentium processors, or the destruction of the first

Ariane 5, are well-known illustrations. In contrast, the use of analytic verification techniques3

allowed Silicon Graphics to design chips that were functional on the first fabrication run, which

was unprecedented for the manufacturer. By decreasing the human effort required to find faults and

rework software, the software development costs can be reduced and become more predictable.

3.4 Limits of Model Checking

Model checking is limited by state space explosion: the number of states to be explored grows

exponentially in the size of the system. In particular, model checkers do not perform induction, and

hence can only verify systems of bounded size, in terms of reachable state space. The major

challenge to successful application of model checking is to produce a model that is accurate enough

to provide useful information about the system, yet small and abstract enough to produce a state

space of finite and tractable size. While this remains the main limiting factor, the state of the art

provides tools that can handle very large systems with several million states.

Model checking technology, especially symbolic model checking, is extensively employed in

verification of digital hardware, where the limitation to bounded systems is often not a limiting

factor. However, software, especially autonomy software, is both qualitatively and quantitatively

more complicated than digital hardware. First, computer programs feature complex and often

unbounded data structures that induce huge and often infinite state spaces. Second, programs use

more elaborate constructs such as dynamic memory allocation, procedure calls, object orientation

or dynamic thread creation, that complicate the task of representing and comparing their states in an

efficient way.

However, the most complex and time-consuming part in nowadays experiences in model checking

of software is not so much in doing the verification but mainly in turning the programs into

verifiable models. Typically, no formalized high-level description of the software is readily

available; more often than not, the starting point is the program code for the implementation. The

verifier thus faces a double challenge. First, he must translate his application into the input

language of the model checker. Second, he must abstract away enough of the original system to

11

obtain a model that will be amenable to model checking within reasonable time and space. Both

tasks are arduous and require a deep understanding of both the software being verified and the

model checker used to verify it. The net result is that software model checking is currently mostly

performed off-track by V&V experts, rather than by field engineers as part of the development

process. The translation task can be automated, but the abstraction phase is more complex: though

the formal grounds for rigorous abstraction are a topic of active research (Graph and Saïdi, 1997), they

have yet to be turned into useful tools.

3.5 The Relevance of Model Checking

Classifying model checking as an analytic verification technology carries the idea that it is used to

prove that a design is correct. This is an over-optimistic, but also largely incomplete picture.

It is over-optimistic because any verification result is conditioned on the implicit hypothesis that

the verified model indeed reflects the design. Theorem proving has the expressive power to carry

arguably fully general proofs, though on small problems and with extensive expert guidance.

Model checking, on the other hand, suffers from the abstractions and simplifications needed to get

to a finite and tractable model. For example, a property that is successfully verified for a system of

four components might fail for five or more components. When an error is reported by the model

checker, the diagnostic information can be analyzed to trace the error back to the design or to the

model. If nothing is found though, a doubt persists. For this reason, model checking is sometimes

coined as a falsification method, that is, a way to prove systems wrong rather than prove them right.

In this sense, model checking is akin to testing: it does not give absolute proofs of correctness, but

increases the confidence level by exploring a quantifiable part of the system's possible

configurations. Model checking will give a much wider coverage than testing for a much lower

cost. On the other hand, it will overlook a whole lot of implementation details that can only be

tested on the final implementation. Model checking does not replace testing but complements it:

testing can be focused on later stage issues such as interface compatibilities, while model checking

will find concurrency bugs that are very hard to track down with testing.

Even more importantly, though, model checking is a very powerful and flexible software

understanding and debugging tool. It gives the possibility to explore a program, look for a

particular configuration, guide the search with a specific property, all this while automatically

12

going back and forth through all possible alternative executions. It allows more errors to be found

early in the design and thus fixed at little cost, resulting in improved software quality.

4 Verification of Model-Based Systems

Model-based autonomous systems present a particularly tough challenge for model checking

techniques. Usual procedural programming languages such as Ada, C++ or Java can be fairly easily

translated and abstracted into transition systems for modeling purposes (Havelund and Pressburger). In

contrast, the reasoning engines used in MBR perform complex computations using large-size data

structures capturing their knowledge about the model.

The issues of correctness of the general-purpose reasoning engine and the application-specific

model are very different ones that we can address separately. The autonomy model can be

considered as a high-level program that is "executed", in a somewhat unusual way, by the reasoning

engine. The reasoning engine is a more complex, but also more stable and better understood part. It

is typically built around a couple clearly identified algorithms that have been subject to careful

scrutiny and documented in technical publications. For this type of essentially sequential algorithm,

theorem proving tools seem more appropriate. This verification work, however, is to be done once

and for all by the designers of the model-based infrastructure.

4.1 Verification of Autonomy Models

From the point of view of the autonomy application developer, the reasoning engine should be

viewed as a stable, trustable part, just as a C programmer trusts his C compiler. His main concern is

the validation of the autonomy model he is writing with respect to the real system that this model

represents. This can be addressed by converting this model into a verification model that can be

model-checked against expected properties of that system.

Autonomy models are themselves high-level descriptions, as opposed to low-level programming

code found in more conventional software development. This is one of the main benefits of using

model-based approaches. It is also beneficial to analytic verification: for systems of comparable

complexity, an autonomy model is more likely to be tractable for model-checking after translation

but without further abstraction, whereas a controller developed using conventional programming

techniques would require important simplifications to be amenable to model-checking. This makes

13

an approach based on pure translation, which is much easier to implement, viable for practical use.

For the verification step to be completely transparent to the developer of autonomous models, three

translations have to be provided, as illustrated in Figure 3:

- The model is translated from the autonomy syntax to the verification syntax. This also

produces a correspondence map between elements of the two models (components, variables,

events, etc.);

- In the property to be verified, elements of the autonomy model are replaced by corresponding

elements of the verification model. For convenience, this translation can also convert the

concrete syntax for properties, so that logic operators can be expressed in the autonomy

syntax as well. Moreover, new property constructs can be defined and expanded into those

supported by the model checker.

- Conversely, in the diagnostic traces returned by the model checker, elements of the

verification model have to be replaced back by the corresponding elements of the autonomy

model.

Autonomy
Model

Verification
Model

Autonomy
Property

Verification
Property

Autonomy
Trace

Verification
Trace

T
R
A
N
S
L
A
T
I
O
N

Reasoning
Engine

Model
Checker

Figure 3. Translation for Model Checking of Autonomy Models

Unlike usual computer programs, autonomy models are not intended to describe sequences of

operations but rather to provide a description of possible operations from which such sequences can

be inferred when needed. The model itself allows for a very wide range of behaviors, with a

relatively weak coupling between successive steps. In terms of model checking, this tends to

produce a broad but shallow state space: the graph of reachable states has a big branching factor,

14

corresponding to the numerous possible behaviors, but all states are reached within a relatively

small number of steps.

Autonomy models such as those used in Remote Agent also use a declarative style, where elements

are described as a combination of logic statements. This supports abstraction and modularity, but is

exposed to completeness and consistency concerns: if a statement is too weak, improper executions

can appear; if it is too strong, no execution can be possible. In terms of states and transitions,

inconsistency manifests itself as a deadlock state, inconsistency as a form of non-determinism.

Both can be detected by model checking, though not all model checkers can easily express

determinism.

4.2 An Example: Symbolic Verification of Livingstone Models

After exploratory experiments on models used by the Remote Agent Planner/Scheduler (see

Section 5.3), the principles for verification of autonomy models set forth in the previous section

have been applied to verify models for the Livingstone health management system using symbolic

model checking.

Livingstone is used to monitor the health of a complex device such as a spacecraft. It tracks the

commands issued to the device and monitors device sensors to detect and diagnose failures. To

achieve this, Livingstone relies on a model of the device that describes, for each component, the

nominal and abnormal functioning modes, how these modes are affected by commands and how

they affect sensors. All sensor data is processed by a set of monitors that turns physical measures

into a-priori defined discrete values such as high, medium and low. The Livingstone model thus

represents a combination of concurrent discrete, finite-state transition systems.

The ASE group, in collaboration with Prof. Reid Simmons at Carnegie Mellon University (CMU)

has developed a translator from Livingstone models to the SMV symbolic model checker (Burch et

al., 1992). The essence of the translation is fairly straightforward, due to the similar synchronous

concurrency model used in both Livingstone and SMV (i.e. all components take a lock-step

transition at each step). The main difficulty comes from discrepancies in variable naming

conventions between the Lisp-like syntax of Livingstone and the Pascal-like syntax of SMV.

To express properties to be verified, SMV supports the powerful temporal logic CTL. In the

Livingstone model, such properties are encapsulated in special declarations and written in a Lisp-

15

like style that is consistent with the rest of the Livingstone model. Pre-defined specification

patterns and variables can also be used for common properties such as consistency, reachability of

given component modes or existence of a broken component. These declarations are captured and

converted into SMV syntax by the translator. For example, a property

(all (globally (implies (on (heater h1))

 (high (temp t1)))))

in the Livingstone model could be translated into the following SMV statement:

AG ((h1.mode = on) -> (t1.temp = high))

Work is in progress at CMU for converting SMV diagnostic traces back into Livingstone syntax,

thereby completing the bridge between Livingstone and SMV.

Consistency and completeness are a prime source of trouble for designers of Livingstone models.

For example, each mode of each component has a list of associated transition declarations

(name :when cond :next mode)

that work as guarded commands: "if cond holds, then transition to mode". For the model to work

correctly, it is required that exactly one of the cond of each active mode hold at each step. If two

transitions are enabled simultaneously, then two next modes are enforced at the same time,

resulting in inconsistency. The translator supports predefined properties to check for such errors.

When the pre-defined property :consistency is given, the translator extracts the guards of all

transitions and generates, for each mode, a mutual exclusion property among its transitions.

The translator is being used at NASA Kennedy Space Center by the developers of a Livingstone

model for the In-Situ Propellant Production (ISPP), a system that will produce spacecraft propellant

using the atmosphere of Mars. The translator allows the model developers at Kennedy to express

the properties to be checked in their familiar modeling syntax, then invoke the SMV model checker

without writing a single line of SMV syntax. First experiments have shown that SMV can easily

process the ISPP model and verify useful properties such as reachability of normal operating

conditions or recoverability from failures. The current version of the ISPP model, with 1050 states,

can still be processed in less than a minute using SMV optimizations (re-ordering of variables). The

Livingstone model of ISPP features huge state spaces but little depth (all states can be reached

within at most three transitions), for which the symbolic processing of SMV is very appropriate.

16

4.3 Verification of Model-Based Applications

Model checking of an autonomy model only addresses its validity as an abstraction of a physical

system, not its adequacy as support for model-based reasoning for which it is designed. Feeding a

sensible model into a sound reasoning engine does not guarantee that the desired answer will

always be obtained. The problems addressed by model-based systems are of high computational

complexity, or even not decidable in general, so the reasoning engines are based on partial,

heuristic algorithms that may fail to find a solution even if such a solution exists. For example, a

planner might not be able to find a plan to achieve a given goal. It may also happen that, although

the model is correct, the engine does not have enough information to give a correct answer. For

example, a fault might not be diagnosed because of insufficient sensory information. It is therefore

still desirable to perform analytical verification over the whole model-based system, that is,

consider both the reasoning engine and the autonomy model it uses.

When we look at the autonomous controller as a whole, the autonomy model is data used by the

reasoning engine, as opposed to a dynamic model of its own. In order to apply model checking to

the complete application, we need a verification model of the reasoning engine and its data

structures, including the autonomy model. Producing such a model would be an arduous and error-

prone task. Furthermore, the size of the data structures involved would severely limit the number of

states that can be covered.

Nevertheless, an intermediate approach, halfway between testing and model checking, can be

considered. We will refer to this approach as analytic testing. Like conventional testing, the real

reasoning engine is executed inside a testing environment, rather than simulating some abstract

model of it. In particular, the environment has to contain a simulator for the controlled system.

However, the engine and the environment code are instrumented in order to allow finer control on

how the test is executed. Instead of running a handcrafted sequence of test runs, the test driver uses

the same kind of systematic exploration algorithm as used in model checkers to drive the system

through a whole range of scenarios, while looking for violations of desired properties.

How far this approach can go will depend on the provided instrumentation. At least, the test driver

should be able to control scheduling of the different components, both in the engine and in the

environment, stop execution at choice points and select which branch is followed (e.g. which fault

is simulated). The VeriSoft tool (Lucent) (Godefroid, 1997) applies this principle to C programs. If the

17

state of the application can also be accessed and modified by the test driver, then it is possible to

perform an exhaustive exploration. Otherwise, as in Verisoft, loops cannot be detected and the

exploration has to be pruned at an arbitrary depth.

This analytic testing would provide a better accuracy of the verification results, since no translation

or abstraction of the verified system takes place. While verification of models can search for

potential causes of incorrect reasoning, analytic testing of complete applications will allow to

actually check that the reasoning engine tells the right thing. On the other hand, analytic testing will

run real code and thus be much more hungry in computing resources, so the search space will have

to be narrowed down to a tractable range, typically by focusing on a few typical mission scenarios.

As far as we know, little work has been done until now to address verification of model-based

autonomy applications as a whole. In the coming months, we will develop analytic testing

technology for the Livingstone system at NASA Ames, as a continuation of the work done on

Livingstone models described in the previous section.

5 Other Experiences at NASA

In addition to verification of Livingstone models described in Section 4.2, this section presents

other examples of verification done on autonomy software at NASA. Most of them have been

performed by the Automated Software Engineering group (ASE) at NASA Ames Research Center.

They focus on components of Remote Agent, described in section 2.3.

5.1 Verification of Remote Agent Executive

A team from the ASE group used the Spin model checker to verify the core services of RA EXEC

and found five concurrency bugs (Lowry et al., 1997). Four of these bugs were deemed important by

the executive software development team, which considers that these errors would not have been

found through traditional testing. Once a tractable Spin model was obtained, it took less than a

week to carry out the verification activities. However, it took about 1.5 work-months to manually

construct a model that could be run by Spin in a reasonable length of time, starting from the Lisp

code of the executive. The initial models were not sufficiently abstract and simple to be tractable by

Spin.

18

This is a typical case of conventional V&V effort: an existing system is handed to V&V experts

who have a hard time understanding the original design and distilling it down to a tractable model,

and then find and report concurrency bugs. It stresses the cost of modeling, as opposed to

verification. The designers of the Executive would arguably have much less trouble doing the

modeling work, since they knew their program much better, but would have a hard time learning

Spin and tuning the model to a tractable size.

5.2 Search for the RAX Anomaly

Shortly after an anomaly was discovered in RA EXEC during the Remote Agent Experiment

(RAX) in May 1999, the ASE team took the challenge of performing a "clean room" experiment to

determine whether the bug could have been found using verification and within a short turnaround

time. Over the following weekend, a front-end group selected suspect sections of the code, and a

back-end group performed the modeling in Java and the verification in Spin, using the group's Java-

to-Spin translator Java Pathfinder (Havelund and Pressburger). The hardest part was to understand the

Lisp source code of EXEC. It then took 3 hours to produce a two-page Java program that models

the backbone of the concurrent structure of two tasks and reproduces the bug. As it turns out, this

bug is a deadlock due to improper use of synchronization events, and is identical to one of the five

bugs detected in another part of EXEC with Spin two years before.

The main lesson is not so much in the success of this verification effort than in the correlation with

the previous one: it proves that the kind of concurrency bugs that were found and fixed in another

part of the system can indeed pass through heavy test screens and compromise a mission. Besides

this, it stresses again the difficulty of the modeling phase. It also illustrates the convenience of

Java's concurrent programming primitives for modeling purposes.

5.3 Verification of Remote Agent Planner/Scheduler Models

Researchers from ASE conducted preliminary experiments in translating Planner/Scheduler models

to the SMV, Spin and Murphi model checkers (Penix et al., 1998). Those models are composed of a

large number of tightly coupled declarative constraints, whose combined effects are difficult to

apprehend. Automated validation can find inconsistencies and determine whether implicit

properties of the model can be derived from the set of explicit constraints. The experiments were

done on a small model of an autonomous robot. A useful subset of the planner modeling language,

19

covering the robot example, could be translated in all three model checkers. No translation tool was

built, but the translations were done by hand in a systematic way amenable to automation. The

analysis identified several flaws in the model that were not identified during testing. Out of the

three model checkers used, SMV allowed the most direct translation and was by far the fastest: 0.05

seconds vs. ≈30 seconds for Spin or Murphi.

This was the first experiment by ASE in model checking of autonomy models. The good

performance of SMV can be attributed to different factors:

- The declarative style of Planner models is directly translatable in SMV models, whereas it has

to be simulated by a big iteration loop in Murphi and Spin.

- Planner models are weakly constrained: a lot of states can be reached at any time. Spin and

Murphi have to enumerate all those states and transitions explicitly, whereas the symbolic

computations in SMV involve fairly compact logical expressions.

Planner models also contain timing information that was ignored here since un-timed model

checkers were used. The Autonomy group at NASA Ames is currently pursuing further

experiments using the Uppaal real-time model checker (Larsen et al., 1997).

5.4 Consistency Checking of Remote Agent Traces

While testing the Remote Agent, long logs of exchanged messages were generated. These logs have

to be searched for errors by experts, a cumbersome and error-prone task. The Formal Methods

group at Jet Propulsion Laboratories has used a database to verify those traces (Feather, 1998). The

traces were checked for consistency with explicit design requirements (so-called flight rules), and

correct message flow. The messages, and their ordering, were entered as objects in the database,

and the flight rules and message flow requirements were then formulated as queries on the

database. It took around two minutes to check each query on a set of about 60 traces. All traces

were found to meet all the requirements.

This is a different and quite original approach. Analytic verification is performed on test results, not

on the system itself, so the results have a more limited significance. On the other hand, it relates to

system-level testing of the whole Remote Agent, whereas model checkers can only deal with

smaller sub-components. This approach was also much easier and faster to set up than a typical

model checking task.

20

6 Conclusions

Because of the internal complexity of autonomous controllers, and the huge range of situations that

they can potentially address, scenario-based testing provides a very limited coverage. Model

checking can help to find the concurrency problems that would be overlooked in testing, and fix

them earlier in the development and thus at cheaper cost.

For autonomy software based on conventional programming techniques, the analytic verification

issues do not differ much from those met in other software systems such as communication

protocols or safety-critical controllers. The main obstacle is the translation and abstraction work

required to go from a complex piece of software to an abstract model of tractable size.

For model-based autonomy applications, recent experiments have shown successful use of

symbolic model checking for the verification of autonomy models. The high level of abstraction of

those models allows model checking to be applied on direct translations, without further

abstraction. Verification of complete model-based applications is beyond reach of model checking,

but an intermediate solution applying model checking principles to support analytic testing has

been outlined.

A key factor in the future success of model checking, and other analytic verification technologies,

is their close integration in the development environment of autonomous system designers. The

principles alone require some learning phase; users are not willing to spend more time to learn the

input language of a model checker, and re-write their program in that language. If the model

checker becomes just another button next to the source-level debugger, then developers will

definitely use it and reap its benefits.

Autonomous software requires even more reliability than current critical control software, because

there will be little or no human supervision to detect and act upon unexpected failures at run-time.

Analytic V&V can become the key enabling factor for using autonomous systems, providing the

necessary level of assurance that the right thing will be happening when no one is watching.

Bibliography

(Bryant, 1986) R. E. Bryant. "Graph-based algorithms for boolean function manipulation".

IEEE Transactions on Computers, C-35 (8), 1986.

21

(Burch et al., 1992) J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang,

"Symbolic model checking: 10^20 states and beyond", Information and

Computation, vol. 98, no. 2, June 1992, pp. 142–70.

(Butler et al., 1995) Ricky W. Butler , James L. Caldwell, Victor A. Carreno, C. Michael

Holloway , Paul S. Miner and Ben L. Di Vito. "NASA Langley's Research

and Technology-Transfer Program in Formal Methods". In: 10th Annual

IEEE Conference on COMPuter ASSurance (COMPASS '95), Gaithersburg,

MD, June 1995

(Coudert et al., 1989) O. Coudert, C. Berthet, J. C. Madre. "Verification of synchronous sequential

machines based on symbolic execution". In: Proc. of the Workshop on

Automatic Verification Methods for Finite State Systems, Lecture Notes in

Computer Science, vol. 407, Springer-Verlag, 1989.

(Dill et al., 1992) D. L. Dill, A. J. Drexler, A. J. Hu and C. H. Yang. "Protocol Verification as

a Hardware Design Aid". 1992 IEEE International Conference on Computer

Design: VLSI in Computers and Processors, IEEE Computer Society, pp.

522-525.

(Di Vito, 1996) B. L. Di Vito. "Formalizing New Navigation Requirements for NASA's

Space Shuttle". Lecture Notes in Computer Science 1051, Springer Verlag,

1996.

(Feather, 1998) M. Feather, "Rapid Application of Lightweight Formal Methods for

Consistency Analyses", IEEE Transactions on Software Engineering, vol.

24, no. 11, November 1998.

(Godefroid, 1996) P. Godefroid. " "Partial-Order Methods for the Verification of Concurrent

Systems – An Approach to the State-Explosion Problem", volume 1032 of

Lecture Notes in Computer Science, Springer-Verlag, January 1996.

(Godefroid, 1997) P. Godefroid. "Model Checking for Programming Languages using

VeriSoft". Proceedings of the 24th ACM Symposium on Principles of

Programming Languages, pages 174-186, Paris, January 1997.

22

(Graph and Saïdi, 1997) S.Graf, H.Saïdi. "Construction of abstract state graphs with PVS". In

Proceedings of the 9th Conference on Computer-Aided Verification

(CAV'97), Haifa, Israel, June 1997.

(Gross et al., 1999) A. R. Gross, K. R. Sridhar, W. E. Larson, D. J. Clancy, C. Pecheur, and G.

A. Briggs, “Information Technology and Control Needs For In-Situ

Resource Utilization”, to appear in Proceedings of the 50th IAF Congress,

Amsterdam, Holland, October 1999.

(Havelund and Pressburger) K. Havelund, T. Pressburger. "Model Checking Java Programs Using

Java PathFinder" To appear in "International Journal on Software Tools for

Technology Transfer".

(Henzinger et al., 1997) T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. "HyTech: A Model Checker

for Hybrid Systems". Software Tools for Technology Transfer 1:110-122,

1997.

(Holzmann, 1997) G. J. Holzmann, "The Model Checker SPIN", IEEE Transactions on

Software Engineering, vol, 23, no. 5, May 1997.

(Ip and Dill, 1996) C. N. Ip and D. L. Dill. "Better Verification through Symmetry". In: Formal

Methods in System Design, Volume 9, Numbers 1/2, pp 41-75, August 1996.

(Larsen et al., 1997) Kim G. Larsen, Paul Pettersson and Wang Yi. "UPPAAL in a Nutshell". In

Springer International Journal of Software Tools for Technology Transfer

1(1+2), 1997.

(Lowry et al., 1997) M. Lowry, K. Havelund, J. Penix, "Verification of AI Systems that Control

Deep-Space Spacecraft", in: Foundations of Intelligent Systems, LNAI, Vol.

1325, Springer Verlag, 1997.

(Muscettola, 1994) N. Muscettola. "HSTS: Integrating planning and scheduling". In Mark Fox

and Monte Zweben, editors, Intelligent Scheduling. Morgan Kaufmann,

1994.

23

(Muscettola et al., 1998) N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. "Remote Agent: To

Boldly Go Where No AI System Has Gone Before". Artificial Intelligence

103(1-2):5-48,August 1998.

(Nayak et al., 1999) P. P. Nayak et al. "Validating the DS1 Remote Agent Experiment". In:

Proceedings of the 5th International Symposium on Artificial Intelligence,

Robotics and Automation in Space (iSAIRAS-99), ESTEC, Noordwijk,

1999.

(Owre et al., 1996) S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. "PVS:

Combining specification, proof checking, and model checking". In: Rajeev

Alur and Thomas A. Henzinger, editors, Computer-Aided Verification, CAV

'96, volume 1102 of Lecture Notes in Computer Science, Springer-Verlag,

pages 411-414.

(Pell et al., 1998) B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N. Muscettola, P. P. Nayak, M.

Wagner, and B. C. Williams. "An Autonomous Spacecraft Agent Prototype".

Autonomous Robots 5(1), March, 1998.

(Penix et al., 1998) J. Penix, C. Pecheur, K. Havelund, "Using Model Checking to Validate AI

Planner Domain Models", Proceedings of the 23rd Annual Software

Engineering Workshop, NASA Goddard, December 1998.

(Williams and Nayak, 1996) B. C. Williams and P. P. Nayak, "A Model-based Approach to

Reactive Self-Configuring Systems", Proceedings of AAAI-96, 1996.

(Yovine, 1997) S.Yovine. "Kronos: A verification tool for real-time systems". In Springer

International Journal of Software Tools for Technology Transfer, Vol. 1, No.

1/2, October 1997.

24

Verification and Validation of Autonomy Software at NASA

Charles Pecheur

Keywords: autonomy, verification, model checking, software, NASA

25

Verification and Validation of Autonomy Software at NASA

Charles Pecheur

Contact information:

Charles Pecheur

NASA Ames Research Center, M/S 269-2

Moffett Field, CA 94035, U.S.A.

Phone: +1-650-604-3588

Fax: +1-650-604-3594

E-mail: pecheur@ptolemy.arc.nasa.gov

26

Verification and Validation of Autonomy Software at NASA

Charles Pecheur

Footnotes:

*RIACS / NASA Ames Research Center. E-mail: pecheur@ptolemy.arc.nasa.gov

1 More generally, one speaks about verification and validation (V&V), where verification checks the implementation
against its specification, i.e. "does things right", whereas validation checks that the specification itself captures the
intended requirements, i.e. "does the right things". This distinction depends on what is considered to be the
requirements and the specification; for our purposes, we consider any mechanized evaluation to pertain to verification,
and restrict validation to human review with respect to mental concepts. Technically, this paper is about verification,
not validation.

2 Not to be confounded with the models used in model-based autonomy, which we will refer to as autonomy models.
The distinction is mostly one of syntax and purpose; both belong to the same broad family of automata-based
formalisms.

3 Using symbolic equivalence checking, a simplified form of symbolic model checking that compares the transition
relations of two systems (Coudert et al., 1989).

